Wednesday, 25 January 2012

What is A Graphic Card – VGA – SVGA  – HD

Reference And Courtesy :-
what is a graphic card
What is a Graphic Card :- A graphics card, also known as a video card, is a piece of hardware installed in acomputer that is responsible for rendering the image on the computers  monitor or display screen. Graphics cards come in many varieties with varying features. The Graphics card is responsible for delivering the image you see on your PC monitor. Its GPU (Graphics Processing Unit) processes the data and changes it into a signal to the monitor. There are many factors to a graphics card. Choosing one can be a tricky business these days as there is so much technology that is different in each new graphics card release.
Graphics Acceleration :- When PC’s first came and for some time after, the graphics cards purpose was only to display the image on the screen. The amount of memory you got on a graphics card was very small and was not needed to a great extent. Today’s graphics cards do more than just display an image, they help the processor with the job of processing when it comes to the graphics. The graphics card would in effect accelerate the process of displayingthe image on screen.
This was needed when the 3D gaming world took the centre stage. The speed required to process the images on screen at 60 frames per second and process the code for the game itself was simply too much for a CPU to handle on its own and so the games would simply crawl along at a very slow pace. The graphics card would use some of its own built in instruction logic to added things such as textures and lighting effects, fog effect and bump mapping to give a far more detailed picture. Also the speeds of graphics cards have improved a great deal in order to let these effects be used without the problem of the frame rate dropping.
what is a graphic card
Anti-Aliasing :- One of the biggest improvements to graphics technology was nothing to do with an increase of speed or efficiency but with graphical improvements. Anti-aliasing was technology to allow jagged edges of computer sprites to be smoothed on screen by blending colours. Monitors have pixels which are rectangular by nature and are incapable of drawing a diagonal line without looking crooked. Anti-aliasing technology doesn’t prevent this from happening but uses tricks of the eye in order to make images look smoother and more pleasing to the eye.
Anisotropic filtering :- Anisotropic filtering is a method of increasing graphics card performance by allowing the graphics card to render textures in the background or further away at a lower quality level. There are many levels of Anisotropic filtering (AF) usually 1x, 2x, 4x, 8x, and maxed at 16x. The higher the multiplier the better the textures will look in the background but will increase the performance hit on the graphics card.
Refresh Rate :- The refresh rate of a graphics card is no different to that of a monitor, it is the amount of times per second the image is “refreshed” and is measured in Hz (60Hz = 60 refreshes per second) With a graphics card however the refresh rate is the amount of times a full image is calculated ready for display. If for example your set your graphics card to 100hz the it would attempt to calculate a new image 100 times per second. Fine on the surface as you you would think the faster the better, but remember you also have a monitor that needs to display this image. If yourmonitor is only capable of displaying 75hz then you will have frames rendered before the monitor was ready to display them, this causes screen tears or unwanted “artefacts” on the screen. To avoid this, you should enable the V-Sync feature – short for Vertical Synchronisation, this feature limits the graphics card to the refresh rate of the monitor even if it can render the image faster.
AGP or PCI Express :- Two types of Graphics card available today are the AGP and PCI-e versions. The AGP (Accelerated Graphics Port) is the older of the two technologies but still quite popular as many people still have these slots incorporated into there motherboards. The PCI-Express (Peripheral Component Interconnect) version has been around for a few years now and new graphics cards and motherboards alike are using this technology. PCI express offers a greater scope for data transfer to and from the graphics card and main memory. If buying a graphics card today then the PCI-Express is the way to go as AGP cards are dying out.
How do you measure the speed of a graphics card?
Measuring the speed of the graphics card is a lot more difficult than with the CPU or RAM or even the hard disk. There are many factors which affect how quickly the graphics card can do its job. Many of these only come into play when the graphics card is undertaking certain tasks.
Core clock speed :- Much the same as the way you measure the speed of a CPU. The core speed of the Graphicscard is measured in MHz and represents the amount of clock cycles the graphics process can do per second. This is a good but not definitive way of telling how fast the graphics card is.
Memory clock speed :- Exactly the same of as the core clock speed, except of course that it is for the memory of the graphics card and not the core. This is just as important as the core speed as the memory contains textures that need to be applied to the pixels.
Pixel Pipelines:- The amount of pixel pipelines a graphics card has can have a great impact on the speed of the image rendering. This is all about pixel pushing power. A card with 8 pipelines can process twice as many pixels as a card of the same core speed and 4 pipelines.
Textures per pipeline :- This only come into effect when multiple textures are needed on the one pixel. Simply put if a multiple texture is needed, then a graphics card with more textures per pipeline will be quicker. On single textured pixels the amount of textures per pipeline will have no effect.

How Graphics Cards Work:-

A graphics card’s job is complex, but its principles and components are easy to understand. In this article, we will look at the basic parts of a video card and what they do. We’ll also examine the factors that work together to make a fast, efficient graphics card. Think of a computer as a company with its own art department. When people in the company want a piece of artwork, they send a request to the art department. The art department decides how to create the image and then puts it on paper. The end result is that someone’s idea becomes an actual, viewable picture. A graphics card works along the same principles. The CPU, working in conjunction with software applications, sends information about the image to the graphics card. The graphics card decides how to use the pixels on the screen to create the image. It then sends that information to the monitor through a cable. ­
Creating an image out of binary data is a demanding process. To make a 3-D image, the graphics card first creates a wire frame out of straight lines. Then, it rasterizes the image (fills in the remaining pixels). It also adds lighting, texture and colors. For fast-paced games, the computer has to go through this process about sixty times per second. Without a graphics card to perform the necessary calculations, the workload would be too much for the computer to handle.
The graphics card accomplishes this task using four main components:
  • A motherboard connection for data and power
  • A processor to decide what to do with each pixel on the screen
  • Memory to hold information about each pixel and to temporarily store completed pictures
  • A monitor connection so you can see the final result

1 comment:

  1. hi..Im student from Informatics engineering, this article is very informative, thanks for sharing :)